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SECTION 1 

INTRODUCTION 

During the past few years a great deal of research has been conducted on the problem 

of sloshing of liquid propellants in missile and space vehicles. One of the primary 

objectives of these investigations was to study the effects of this liquid motion on the 

dynamic stability of the rocket. 

It has been observed that, in any rocket flight, the vehicle body is subjected to trans- 

latory and oscillatory perturbations from external forces such as guidance and con- 

trol inputs. Vehicle body motions of this type result in disturbances of the contained 

liquid. If the perturbations occur at a frequency near that of the control frequency of 

the vehicle, the liquid is forced to oscillate at amplitudes sufficiently large to cause 

severe de-stabilizing forces and moments on the vehicle. Bauer [l] remarks that 

with the increasing size of space vehicles and their larger tank diameters, which 

lower the natural frequencies of the propellants, the effects of propellant sloshing 

upon the stability of the vehicle may become extremely critical. This is especially 

true at launch since usually more than 90 percent of the total mass is in the form of 

liquid propellant. With increasing diameter, the oscillating propellant masses and 

the corresponding forces increase. 

One of the methods of limiting the amplitude and duration of these liquid oscillations 

is the use of an annular baffle. The baffle will break up the flow pattern and thereby 

dampen the oscillations. Miles [ Z ]  gives approximate values for damping due to ring 

baffles in a right circular cylinder. He relies on a drag coefficient obtained from the 

experimental data of Keulegan and Carpenter [3]. Cole and Gambucci [4]  and [5] 

conducted experimental tests for measuring the effectiveness of baffles in damping 

the liquid oscillations. There have been many other tests run to determine the effects 

of various baffles including [6] and [7]. 

1-1 
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The purpose of this study is to present a complete theoretical discussion of the effects 

of an annular ring baffle on the behavior of liquid within a right circular cylinder. The 

problem is solved by assuming two potential functions; one valid in the region above 

the baffle and the other valid in the region below the baffle. Matching the two functions 

in the plane of the baffle leads to a dual series. Having the solution of these ser ies ,  

the displacement of the free surface as well as the liquids' pressure, forces and mo- 

ments are calculated. 

1-2 
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SECTION 2 

DEFINITION OF THE BOUNDARY VALUE PROBLEM 

This report is concerned with the sloshing of an incompressible, inviscid liquid con- 

tained in a right circular cylinder that is mounted in a space vehicle moving along a 

prescribed path. Because of perturbations due to the deviation of the vehicle from its 

path, the system oscillates and produces waves on the surface of the liquid. It is pro- 

posed that the introduction of an annular baffle below the surface of the liquid will damp 

the induced oscillations. 

Since the tank is in motion along some path, it appears to be reasonable to refer its 

motion to an inertial system, for example the earth. However, i f  any-type of measur- 

ing device is attached to the tank, then it measures quantities in terms of a tank-fixed 

reference frame which is moving relative to the inertial system. Thus, it is necessary 

to be able to express the tank-fixed system in terms of the inertial system and vice versa. 

Let Yi, with coordinates y. (i = 1,2,3) and origin O', be a fixed Cartesian reference 

frame and X. with coordinates x. and origin 0 be a Cartesian frame moving relative to 

Yi. Then, instantaneously, it follows that 

1 

1 1 

y. =E. + a.. x., 
1 1 J 1 J  

- 
where the components of E. are measured in Y 

ment of 0 relative to 0' , and 

z. (t) gives the instantaneous dispace- 
1 i' 1 

measures the instantaneous rotation of X. with respect to Y . 
1 i 

In the following, a repeated index indicates summation over the range of values of the 

index. The coordinate transformation simultaneously gives the formulas of transform - 
ation for  any free vector 

- 
B~ (y) = a.. B. (XI 

J1 J 

2- 1 
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Bi (x) = a.. a. (Y), 
1J J 

where B. and B. are the same vector with components measured respectively in Y 

and X.. 
1 1 i 

1 

Since the a.. are a set of direction cosines, they satisfy 
11 

where 6.. is the Kronecker delta, for any t. Letting i.. denote da. ./dt, a simple 

differentation of (2.1) yields 
1J 11 11 

Define W .  = a i so that according to (2.2) 
i j  ik jk 

Thus w. is a skew-symmetric second-order quantity, which can be shown to be a tensor. 

Hence there exists a dual vector 0 defined by 
11 

1 

w. = - Eijk t, 
9 

where E.. is the third-order alternating tensor. Consequently . 
1Jk 

aik 'jk = - 'ijk t, 
where W may be identified as the angular velocity of X, with respect to Y 

along X., 

The absolute velocity of a particle is given by 

measured 
1 i' 

1 

- 
dyi/dt = fi  =zi (y) + a.. i .  + L.. x. = Qi (Y) 

J1 J J1 J 

However, the control instruments measure ~i (X), where 

2-2 
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But observing that 

that 

is a function of the coordinates x. as well as t, it is to be noted Qi 1 

It was shown above that 

gi (x) = i. + i .  + €.. 
1 1 ijk q Xk 

or  

which is the same as 

r = q - z - -  * w x r .  - - - 

Upon insertion of (2.7) into (2.6), the result is 

a% (x) + - c$z (x) - Zk - d a% 
a% 

gi (x) =- at 0 x I, 
kPq P q 

and finally the acceleration is found to be 

or, in vector symbolism, 

For an incompressible fluid, the Eulerian equations of motion are 

where F. is the specific body force, p is the density, and p is the pressure. 
1 

2-4 
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= z. (x) + x. + ‘ 
1 1 i j k q  \*  

In vector symbolism, (2.3) assumes the form 

. .  
v = z + r + W X r  , - _ _ -  - 

where r is the position vector in X.. The absolute acceleration is obtained from 1 - 
- d -  
ai (Y) =-& Qi (Y), 

and the relation 

- Qi (Y) = a.. (x), 
31 !i 

But since a. (x) is desired and 
1 

d 

a. (x) = a.. a. (Y), 
1 13 J 

2-3 
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an observer traveling with the tank, these are, of course, the only forcing motions 

he sees. 

On the wetted surface of the tank, the boundary condition is that the velocity of liquid 

normal to the tank wall must equal the normal component of velocity of the tank it- 

self (it is assumed here that the tank is rigid). Thus, if  - V denotes the unit exterior 

normal to the tank, then 

since 5 = 0 for a rigid tank, or  - 

There are two conditions at the free surface. If the disturbed free surface is de- 

t) and the unit normal to the quiescent free surface is taken to noted by r) (x 

be 2 = (0, 0, l ) ,  then there exists a kinematic condition such that a particle of fluid 

that travels with the free surface as it moves must have the same velocity as the 

1' x2s 

f ree  surface itself, i.e., if x is the displacement of a particle in the x - direction, 
3 3 

then. 

Expanding the left-hand side of (2.8), it is found that 

and since 

r = q - 2 - g x r ,  - - 

it follows that 

x + -  x = ( q - z - U X r ) . n  -I, =q. - - -  a77W' w .  
at  axl 1 ax2 2 - + -  - 

3 

2-6 
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Now 

Transforming to body-fixed axes, it is found that 

If it is assumed that the fluid motion is irrotational, then there exists a 

potential function cp such that 

q=-vcp or  T ( y ) = - - .  acp - aYi 

It is easily verified that 

asa 
ax. gi (x) = - - 

1 

Then, since the fluid is incompressible (v.q = 0 ) ,  it follows that - 
2 v q = o .  

Thus the fundamental differential equation to be solved is Laplace's equation 

for a velocity potential. 

To describe the boundary conditions for the problem, consider a tank of arbitrary 

shape partially filled with liquid. Suppose that a constant acceleration is imposed 

along an axis of thrust - call it the x axis. Then the liquid assumes a planar sur- 

face normal to the thrust axis - herein this surface is called the free surface. 
3 

Choose the origin of X. at the center of gravity of the fluid in this configuration. 

The motion of the tank-filled frame Xi relative to Y. characterized by i. (x) and 

W are oscillatory motions superimposed on the constant-acceleration motion. For 

1 

1 1 

1 

2-5 
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= [ ( ~ ~ r ) - v I q + q x g  . - -  - -  
When (2.10) is inserted into (2.9), the equation of motion, the result is 

or upon integration and replacement of SI by Q x this becomes 
3' 

1 . 2  acp P-Po - -  - - Q x3 - z  (a -2) + q . ( E X  z) + -, P - at  

(2.10) 

(2.11) 

where p is the constant ambient pressure, Q is the magnitude of the acceleration 

of the liquid-tank system. Thus at 
0 

acp 1 . 2  - =W+-(vCp+i5) + (0 xr) .vCp. at  2 

For small free surface oscillations, the problem may be linearized. Thus second- 

order terms in velocities can be neglected and it is assumed that not only r )  is small, 

but also aq/ax., i = i , 2 .  
1 

Under these conditions, the boundary conditions on the free surface become 

(2.12) 

-- - Qr7, at 

2-8 
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The second condition is a dynamic one which states that the pressure at the free sur- 

face of the liquid must equal the ambient pressure. The form of this condition can be 

obtained from an integration of the equation of motion. Suppose that the only specific 

body force is that due to the gravitational field in which the liquid-tank system is 

operating. The equation of motion is 

Now 

so that the equation of motion assumes the form 

Recall the vector identity 

and substitute into the differential equation of motion; the result is 

Consider next 

since v X q = 0, It is to be noted also that - -  

2-7 
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which are usually combined in the form 

= n  &+gxz)lX - n .vcp -- - 1 a2cp 
= r )  at2 - 3 

- 

If the assumption is made that 4 and - W can be represented as harmonic 

oscillations, 

it is usually assumed that 

The problem then reduces to solving 

2 v $ =  0 

subject to 

on the wetted surface and 

(2.13) 

on the free surface. 

2-9 
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SECTION 3 

PROPELLANT SLOSHING IN A CIRCULAR CYLINDRICAL 

TANKCONTAININGANANNULARBAFFLE 

In an attempt to minimize the effects of propellant sloshing, an annular baffle of infi- 

nitesimal thickness and width (1 - y ) a, (0 < y < l), is mounted on the wall of a circu- 

lar cylindrical tank of radius a. It is convenient to set up a coordinate system cen- 

tered along the axis of symmetry of the cylinder with the origin located in the plane 

of the baffle. Accordingly, it is expedient to use cylindrical polar coordinates 

(r, 8, z), so that z = -h denotes the bottom of the tank, z = 0 is the plane of the baffle , 

and z = zo is the quiescent free surface, whereas r = a refers to the wall of the tank. 

Therefore , in terms of cylindrical polar coordinates , the problem under considera- 

tion here is the solution of Laplace's equation 

(3.1) 

subject to the condition prescribed in (2.13) for the wetted surface of the tank and to 

the condition prescribed in (2.14) for the free surface. 

In order to be more specific about these boundary conditions for the geometry of the 

tank involved, consider, first of all, the vertical wall of the tank r = a. The unit vec- 

tor normal to the wall of the tank is 

v = cos ei_ + s i n  e l  = e  . (3 2) 

The components of the vectors u and w that appear in (2.13) and (2.14) may be ex- 

pressed as 

-r - 

-0 

u = u  i + u 1 + u  k a n d g o  = u1i + w2L + w3k, - 1- 2 3- 
where u. and 0. (i = 1 , 2 ,  3) are constants. It is evident that 

1 1 

3 -1 
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= U  cos 8 + u  s i n 8  + 
1 2 

1 , and 

COS e sin 8 0 

3 
0 

2 0 
1 

w 

a COS 8 a sin 8 z 

(3.4)  

Hence, in view of (2.13), (3.3) and (3 .4) ,  on the wall of the tank r = a, the boundary 

condition is 

= -u cos 8 - u  sin e + z(w sin 8-w COS e).  (+$=a 1 2 1 2 (3.5) 

On the bottom of the tank, where z=-h and v = (O,O, -l), it follows again from (2.13) 

that I 

r cos 8 r sin 8 -h 

i . e . ,  

- r(U, sin 8- w cos e). 2 (3.6) 

Now consider (2.14) and observe that n = (O,O, 1) is the unit normal vector to the m e s -  

cent free surface z = z . Thus, this condition becomes 
- 

0 

0 0 1 
w w 

"1 2 3 
0 

Ir cos e r sin e z 
0 

or 

- - u3 + r (wlsin 8 - w 2  COS e). 
0 

(3.7) 

3-2 
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Finally, because of (2.13) , the condition 

(g)z=o = -u3 + r ( w  cos 8- sin e)  2 1 (3.8) 

holds on the baffle, i.e. , for y a  < r <a,  where p has  been taken to be (0,0,-+1). 

Furthermore, it seems to be reasonable that the z-component of the fluid particle ve- 

locity vector should be continuous in the region z = 0, 0 s r < y a  which corresponds 

to the opening in the baffle; and 9 itself should be continuous there. In other words, 

for z = 0 and 0 1; r < y a, the conditions 

a +  a +  - (r, 8 ,  0+) = - (r, e, 0-) 
a Z  a z  

$ (r, 8 ,  O+)  = 9 (r, e ,  0-) (3.9) 

must hold. 

Therefore , the linearized sloshing problem for a cylindrical tank containing an annu- 

lar baffle is now completely specified in (3.1) to (3, g), inclusive. 

The following discussion treats only the case of pure translational oscillations (g =(I). 

The details of the solution of the problem for the case of pure rotational oscillations 

(u=Q) a re  essentially the same, and by the superposition principle the solutions for 

the two cases may be added to obtain the complete solution of the sloshing problerh 

involving both translational and rotational oscillations of the tank. Therefore the pro- 

blem is reduced to the solution of Laplace's equation 

subject to the prescribed conditions 

= -u cos6 -u sin 8, 0 5 8 s 2n,  - h sz < 0, 0 < z < z (2) r=a 1 2 0 

, y a < r  < a ,  O s  8 I 277, 3 

3 -3 
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(S)s - ; -h  =-u 3' 0 s r  < a ,  0 s 0 5 27, 

From a mathematical point of view, it is necessary to treat the tank as though it were 

composed of two regions, one above the baffle labeled I and the second below the 

baffle labeled II, which leads to two "potential functions" Q1 (r, 8, z) and Q2 (r, e, z) 

for  regions I and 11, respectively, defined such that 

where $ satisfies Laplace's equation 1 

a2 
+ -  = o  

a 2  1 1 a2 $1 
+ -  - + - -  

2 r ar 2 2 2 
a r  r a e  a z  

and the boundary conditions 

= -u cos 0 - u sin 8 ( S ) r = a  1 2 

(.)z=o = -'3 , y a  < r < a, 

and $ also satisfies Laplace's equation 
2 

3 -4 
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- a 2 + 2  + -  1 
2 r  

a r  

plus the boundary conditions 

a 2 $ ,  
2 

a z  

(""2) a r r=a = -u 1 cos 0 -  u 2 sin 8 

(%z=o - - -u 3' y a < r  < a .  

= o  

(3.11) 

In addition to these conditions, the functions + and + 
1 2 

nuity conditions" 

must also satisfy the "conti- 

} for 0 s r <  ya. 

Since none of the boundary conditions embodied in (3.10) and (3.11) are  homogeneous, 

it is convenient to make a change of dependent variable such that certain transformed 

boundary conditions a re  homogeneous. This is accomplished by defining a function 

'pl (r, 8 7 z)7 so that 

A few simple calculations lead to the new boundary value problem 

a2G1 a2G, 1 a% 1 a 'p1 
- 2- 

+ -  = o ,  
2 

+ -  - f -  - 2 
a z  2 r ar r2 a e  a r  

(3.12) 

(3.13) 

3-5 
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(3) a z  z=O = 0, for y a  < r < a 

B2 [ u z + r ( u  cos e + u2 sin e )  3 -- - 
a 3 0  1 

2 

0 - 
In a similar fashion, defining for region II the function cp (r , 8 , z) by 2 

(p ( r , e , z )  = ( r , e , z )  + r(u cos e + u sin 6 )  + u  z, 
2 2 1 2 3 

a new problem is obtained: 

2- 2- 
a cp2 I a p2 a 2 ~ 2  

a e  a z  
- + + - + + -  - + -  = o ,  

2 2 2 2 r a r r  a r  

for Y a  < r < a. 

From the conditions of continuity, it follows that 

(3-14) 

(3-15) 

(3.16) 

(3.17) 

(3.18) 

(3.19) 

(3.20) 

Separating the variables in (3.13) in the classical fashion, it is possible to show, after 

some labor, that the solution of Laplace's equation assumes the form 

cosh( 6 z/a) + B si&([ z/a)][ q r , e , z )  = A  0 + m m m 
- 

m=l 

3-6 
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where A , A , B , C , D are constants, J ( 5  r /a)  is the Bessel function of the 

first kind of order one, and the 5 (m = 1,2,3.. .) a r e  the positive roots of the trans- 

cendental equation 

o m m m m  l m  

m 

J' (x) = 0. 
1 

In view of the boundary condition in (3.14) the function (p must satisfy the condition 
1 

m 

(3.22) 

m=l 

for ya < r < a. Multiply (3.22) by cos 8 and integrate with respect to 8 from 0 to 

27r to obtain 
m 

5 B J ( 6  r/a) = O s  f o r y a  < r < a. 
m m l  m c 

A similar statement results for the term containing sin 8 Le., 
m 

From the free surface condition given by (3 . 15), it follows that 

(3.23) 

(3.24) 

m - (4 'pl - -) a'bl =< 
+z [ Amchsh (m;z ) + B shch(m;z ) ]  [ 

a z  Z=Z 0 m 0 
m= 

3-7 
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sin 8 J ( 5  r/a)] = - e2 [ u  z + r (u  cos e +  u sin 8)19 (3.25) 
l m  Q 3 0  1 2 

where 

1 
m o  a m  m o  

chsh(m;z ) = - P2 cosh(5 z /a) -- 5 sinh(6 z /a) 
O C Y  

and 

cosh(5 z /a). (3.26) B2 
O Q  m o  t m  m o  

shch(m;z ) = - sinh(5 z /a) -a 
Integrating (3.25) with respect to 6 from 0 to 217, it is easily found that 

A = u z .  (3.27) 
0 3 0  

If (3.25) is multiplied by cos 6 and integrated with respect to 8 from 0 to 217 

becomes 

it 

2 [Am chsh(m;z ) + B shch(m;zo)] J1(kmr/a) = - 1 3 ~  u r; 
m=l 

(3.28) 
0 m C Y 1  

and, in turn, if (3.28) is multiplied by rJ  (5 r/a) and integrated with respect to r 

from 0 to a ,  then 
1 k  

making use of the fact that the set { J ( 5  r /a)  ] 

interval (0, a). Using the well-known integrals 
l m  

is a complete orthogonal set on the 

2 
2 ' 5 ,  -1) 2 2 a rJ1 (5,r/a)dr = - 

2 /" 0 e m  

J1 Ern) 2 
(3.29) 

3 -8 
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and 

a 2  3 

2 
Jl(<mr/a)dr =- a J l (Em)  , 

%n 
it follows immediately that 

1' 
U 

2 a B  

a(Sm - 1) J1(Cm) 2 
A chsh(m;z ) + B shch(m;z ) = 

m 0 m 0 

(3.30) 

(3.31) 

Proceeding in an analogous fashion with the term in (3.25) containing sin 8, a similar 

relation is obtained: 

9 

U 2aBa 
m 0 m 0 2 2 '  

C chsh(m;z ) + D shch(m;z ) = 

a(tm - 1) J1'Cm) 
(3.32) 

where again (3.29) and (3.30) have been employed. Inserting (3.27), (3.31) and (3.32) 

into (3.21) and rearranging terms, the expression for the function (p (r, 0 ,  z) now 
1 

assumes the form 

9 m c - 2ap a cp ( r , 0  ,z) = u z + - (u cos 8 + u sin e) 
1 3 0  CL 1 2 

m=l 

shch(m;z -2) J (5 r/a). (3.33) 
0 l m  

At this point, no specific statements can yet be made regarding the coefficients B 

and D 
m 

which appear in (3.33), despite the fact that these coefficients satisfy (3.23) 
m 

and (3.24) respectively. 

as well as the continuity 

ents B and D . 
m m 

It is necessary now to investigate the function (r, e, z) 2 
conditions given in (3.20) in order to determine the coeffici- 

3-9 
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In analogy to (3.21), the solution of (3.17) may be expressed in the form 

- 
cash( 6 z/a) + Gm sinh(cmz/a) 3 [ q 2 ( r , e , z )  = E 0 + 2 [ F m  m 

m=l 
m 

cos 8 J1(tmr/a)] +L [ H  cosh(5 z/a) + 
m=l 

m m 

K sinh(6 z/a)][sin 8 J (6 r /a ) l .  
m m l m  

(3.34) 

According to (3.18), it follows that 

03 +c [,[-Hm sinh(6 h/a) + K cosh(6 h/a)] sin 8 J ( t  r/a) = 0, 
m m m l m  

m=l 
which leads immediately to 

F sinh([ h/a) = G cosh(Emh/a) 
m m m 

H sinh([ h/a) = K cash([ h/a) 
m m m m 

because of the orthogonality property of the trigonometric and Bessel functions. Con- 

sequently (3.34) may be put in the somewhat more compact form 

(G COS 8 + K sin 8)cosh [ tm(h+z)/a] J (6 r/a) l m ,  m m 
sinh(6 h/a) m 

- 
cp,(r,e,z) = E 0 + 

m=l 

For z = 0 and y a  < r < a, (3.19) comes into play and yields 

(D 

1 =E a E,,(G, cos e + K sin e)  J (6  r/a) = 0, m l m  
m=l 

and therefore 
W OD 

3-10 
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for ,,a < r < a. The so-called continuity conditions given in (3.20) may now be 

applied. Setting (p = cp at z = 0 for 0 5 r < y a, it follows that 
1 2  

- 

(B cos 8 + D sin e) - 2  m m shch(m;z ) J1(tmr/a) = 
chsh(m;z ) 0 

0 m=l 

The orthogonality properties of the trigonometric functions may next be exploited to 

obtain the result 

E = u z  
0 3 0  

a s  well  as 

03 
shch(m;z ) 

m chsh(m;z ) J1(4m r/a) + G~ m h/a) ~ ~ ( ~ ~ r / a )  
0 

0 m=l m=l 

1 J (6 )([t-l)chsh(m;z ) 
m=l 1 m 0 

J (4 r/a) l m  
2 

m=l J (6 )(k,-l)chsh(m;z ) 
l m  0 

- - 

(3.36) 

(3.37) 

3-11 
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which a re  valid for 0 5 r < Y a. Matching the derivatives according to (3.20) and 

again observing the orthogonality of the trigonometric functions on the interval (0,2n ), 

I it can be shown that 

and 

In summary, then, the pertinent results a re  I 

(3.38) 

shc h (m ; z ) 2 Dmchsh(m;z ) 1 m 
m=l 0 

0 J (5 r/a) + 2 K coth([ h/a) Jl(Cmr/a) m m 
m=l  

(tmr/a) = 0, y a  < r < a ,  

m=l 

3-12 
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(3.23) 

(3.24) 

m=l 

Suppose now that the infinite series in (3.40) converge to a function F (r), i. e. , 

m=l m=l 
But according to (3.23) , (3.35) and (3.41) , it is observed that 

(3.42) 

(3.43) 

From (3.42) and (3.43),  it is apparent that G since the two infinite series con- 

verge to the same function in the fundamental interval (0,a). In an analogous fashion, 

it can also be shown that D = K (m = 1 , 2 , 3 , .  . .). Because of these last two state- m m  
ments (3.23),  (3.24),  (3.38) and (3.39) can be collected in the forms 

= B 
m m  

Bm chsh(m;z + h) J ( 5  r/a) 

sinh(5 h/a)chsh(m;z ) 
0 l m  

m=l m 0 

W 

m = l  

and 

(3.23) 

03 D chsh(m;z + h) J ( 5  r/a) m 0 l m  
sinh(&h/a)chsh(m;z ) 

0 m=l 

3-13 
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Therefore, the coefficients B and D m m 
must be determined from these last four 

equations, which reduce to the single pair 
W 

B * chsh(m;z + h) J (5  x) 
0 l m  

m=l sinh(5 h/a)chsh(m;z ) 
m 0 

(3.44) 

(3.45) 
m=l 

2 2 
upon setting x = r/a and defining B = 2ag u B* /a and D = 2ag u B * /a. m l m  m 2 m  
(3.44) and (3.45) may be called a dual series pair, and, since the ,$ 

J '(x) = 0, the pair may be termed a dual Dini series. The solution of the dual ser ies  
1 

for the coefficients B* presents a real problem in itself and will be considered in m 
some detail in Section 5. Thus , once the values of B * (m = 1 , 2 , 3 , . . . ) have been de- 

termined, all the required coefficients in the expressions for the functions (p (r, 0 , z) 

a r e  the zeros of 
m 

m 

1 
and (p (r, 0 , z) will be known. 

2 

3-14 
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SECTION 4 

i FREE SURFACE DISPLACEMENTS, PRESSURE, 

I FORCES, AND MOMENTS 

Supposing for the moment that the dual Dini series embodied in (3.44) and (3.45) have I 
been solved for the coefficients B * , the functions (p (r , e , z) and (p (r , 8, z) may now 

be expressed in the form 
m 1 2 

and 
2 

*(u cos e + u sin e) cp ( r , e , z )  = u  z + 

B * cosh [ 5 (h+z)/a] J1(tmr/a) 

m=l m 

- 
2 2 3 0  Q 1 

m 
sinh( 5 h/a) Y 

and, by (3.12) and (3.16) , the functions $I (r , 8 , z) and 9 (r, 8, z) are defined by 
1 2 

- 
Q i ( r , e , Z )  = cp.(r,e,z) - r(u 1 COS e + u2 sin e) - u3zY (4.1) 

1 

chsh(m;z ) 
0 

4-1 
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and 

(4.3) 

Next define 

-h 2 z < 0, 

igt 
so that q.(r, 8 ,  z,  t) = e +.(r, 0 ,  z), (j = 1 , 2  and i = fi). Then from (2.12) the 

J 1 
free surface displacement of the fluid in the baffled tank may be computed as 

- -- (u cos e+ u sin 0 )  
2 1  2 

ci L 

where 9 as given in (4.2) has been utilized. 

The linearized form of (2.11) is 

1 

4-2 
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and hence the expression for the pressure may more conveniently be written in the 

form 

igt 
p( r ,e ,Z , t )  = p 0  - p  [ C Y Z  - i g  e $ . ( r , e , z ) I ,  (j = 1 , 2 ) ,  (4.5) 1 

in virtue of (4.1) and (4.4). Thus, for the region above the baffle, the appropriate 

expression for the pressure in the fluid is 

igt 
pl(r, 8 , z ,  t) = p - p [ (YZ - ige u3(z0-z) ] 0 

z/a) J1 (Cmr/a) m 
CY 1 2 m=l Jl(tm)(tm 2 -l)chsh(m;z ) 

0 

3 
eigt (u cos 8 + u sin e )  Zipas +- 

B*shch(m;z -2) J ( 6  r/a) 

chsh(m;z ) 
m=l 0 

0 l m  

For r = a, the pressure on the wall of the tank above the baffle is 

Y 
iBt 2ipag igt p l ( a ,O ,z , t )=p  - p  [ ( Y Z  - i g e  u (z -z)]+- e 

0 3 0  CY 

cosh(5 z/a) 

m=l (5, -l)chsh(m;z ) 

m 
2 

0 
1 

(u cos e + u  sine) 
1 2 

B* shch(m;z -2) J1(tm) 
chsh(m;z ) 

m=l 0 - -.I- 2g 

O 
(4.6) 

From (4.3) and (4.5), the expression for the pressure in the fluid below the baffle is 

found to be 

3 p,(r ,e,z, t)  = p -p[az - ige  i/3 t u3 (zo - z > ~  += egt(u cos e 
0 CL 1 

+ u  sin e) 
2 

m 

€3 * cosh[t m( z +h)/al J l(t "r /a) 
(4.7) C" m=l  sinh(5 m h/a) - -1; zag2 

4-3 
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and consequently, on the wall r = a,  the pressure distribution i s  

-9 2 8  

Setting z = -h in (4.7), the pressure on the bottom of the tank is 

3 
2ipa/I igt 

sinh(6 h/a)  
m 

+ e (u cos 8 + u s ine)  
ry 1 2 

The net f o r c e x  acting on an a rea  S can be computed from the surface integral 

(4.10) 

where p - p denotes the net pressure at  a point and g is the unit exterior normal to 

the surface S. 
0 

The unit normal to the vertical wall (r = a) of the tank is 

v = c o s  e i  + s i n  e j ,  (4.11) - - 

so that the force acting on the wall above the baffle can be found from (4.10) upon re- 

placement of p - p from (4.6); this leads to 
0 

Zipas 3 i a I 2 '  
(ul cos 8 + u sin @)(cos 8 i+ sin 8 - j )  d e  F =  e 

2 - 
01 

4-4 
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B* shch(m;z -z) J ( 5  ) m m 0 l m  
- 2 chsh(m;z ) 

-l)chsh(m;z o ) m=l 0 

2 8  - 
where dS = adedz, 0 ?; 8 ?; 2n,  and 0 s z s z have been used. I f 2  = F i + F j 

1- 2- 
a n d u =  u i + u j ,  then for j = 1,2 ,  

0 

1- 2- 
r 

where in view of (3.26) 

aS2 bosh(( z /a)-1 - sinh(5 z /a) shch(m;z -z)dz = - 1 m o  m o  5, 0 

In the region -h s z c 0 on the wall r = a, the net force is found to be 

r 1 

using (4.8), (4.10) and (4.11). 

Finally, on the bottom of the tank, the unit exterior normal is -kand the pressure 

difference is given by (4.9), so that the net force acting on that portion of the .tank 

is, since dS = rdrde ,  

4-5 
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Letting 

point, and p - p the pressure difference at a point on the surface, the moment, M, 

of force taken with respect to the origin of coordinates may be computed from the 

surface integr a1 

denote the unit normal vector to a surface S, 2 the position vector of a 

0 

P 

- M = +d (p - po)x  x dS. (4.12) 

For the portion of the wall  of the tank above the baffle, the appropriate pressure dis- 

tribution is given by (4.6) and by (4.11), so that 

Z 

z shch(m;z -z)dz 
0 

- 
chsh(m;z ) 

m=l 0 

I 

z sinh 5 ‘5, o m o  
2 2  

z /a-a(cosh 5 m o  z /a-1)] 

m=l  5, ( tm -l)chsh(m;z 0 ) 

L 
m=l tmchsh(m;z 0 ) 

1 

4-6 
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- M = -12‘ d 8 a (p-po) 
0 

where the integrals 

r(sin 8 i - cos ej) rdr  
2Z-h 

2 
a 

m o  2 m o  
z cosh 6 (z -z)/a dz = --[ l-cosh(5 z /a)] 

5,  

az 2 
0 a 

z sinh 5 (z -z)/a dz = -- + -  sinh 5 z /a /” 0 - m  o 2 m o  
c m  

5 ,  

have been used. Using (4.8), r x u = -z(sin 8 i - cos 8 j), and (4.12), it is found - - - -  
that 

c 

+&] 4 8  

gives the moment of force acting on the portion of the wall of the tank below the baffle. 

Lastly, the moment of force on the bottom of the tank is evaluated from the integral 

4-7 
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SECTION 5 

SOLUTION OF THE DUAL DIM SERIES 

The solution of the dual Dini Series 

m 
B* chsh(m;zo+h)J (5 x) 1 m  
sinh(5 ,h/a)chsh(m;z ) c m  m= 1 0 

(3.44) 

(3.45) 

may be expressed in a variety of ways, and in the following pages several methods of 

determining the coefficients B& will be given. 

Being somewhat more general than above, consider the dual series 

where J (5 x) is the Bessel function of the first kind of order v ,  6 
the positive roots of J;(x) = 0, F(x) is a known function, -1 

the coefficients am are to be determined. The technique of determining the am is 

based on a method due to "ranter and Cooke [ S I .  

(m = 1 ,2 ,3 ,  e - * )  are 
v m  m 

p 5 1, G(m) is known, and 

5-1 
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The following theorem, which is analogous to a theorem stated in [ S I ,  is necessary 

for the ensuing discussions: 

Theorem. If n is zero or a positive integer, v > -1, k > 0,  and 5, a re  the positive 

roots of the transcendental equation J:(x) = 0,  then 

r (v+n+l) 2 2  9 (k+v,v+l,x /y ) , 0  5 x < y  
2kyv-k+2r(~+l)r(n+k) 

O , y < x < l  
where =i 

q (k+v,v+l,x2/y2) = F (-n, k+v+n,v+l,x2/Y 2 ) 
' n  2 1  

is Jacobi's polynomial, as given by Magnus and Oberhettinger [910 

Proof, Consider the Weber-Schafheitlin integral 

r (v+n+ 1) xv(1-x2/y2)k-1 9(k+v,v+l,x 2 2  /y ), 0 5 x < y  n 
- r(v+i)r(n+k) - 

(0, Y < x  

which is given by Watson [ 101, and then apply the Hankel inversion formula to obtain 

5-2 
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Now the Dini expansion of the function f(x) defined by 

r(v+n+l) xv(1-x2/y2?-l 5 (k+v,v+1,x2/y2), 0 5 x < y 
n 

f(x) = I2k-lYv-k+2 r (v+ i ) r  (n+k) 

is 

The coefficients Am being determined from 

Therefore, using (5.5) , the Am are found to be 

n k-1 v-k+2 r (v+ 1)r (n+k) m 2 2 2  
(5,-v )Jv(5m) 2 Y 

Y 1 xv+1(i-x2/y2~-1 %(k+v,v+l,x 2 2  /y )J (5 x) dx 
v m  

and hence, upon substitution of the result of (5.6) into (5.4),  it is evident that 

(5.5) 

r (v+n+i) xv(1-x2/y2?-1 c(k+v,v+l ,x  2 2  /y ), 0 x < y ,  
ZkYV -k+2 r (v+i)r  (n+k) 

0 ,  y < x <  1, =i 5-3 
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which is the desired result. 

With the results of the above theorem now available, it is observed that 

where k has been replaced by 1 + p/2. Define 

(5.7) 

so that (5.2),  i.e. , the second equation of the pair forming the dual series, is satisfied 

identically. Thus 

by (5.7),  assuming that the order of the summations may be interchanged. 

Next substitute (5.8) into (5.1), the first equation in the dual series,  to obtain 

=F(x), O g x < y ,  

after interchanging the order of summation. But (5.3) can be put in the form 

J~+2k+p/2+1(Y m) - - r(v+k+l) 
p 2 v-p/2+1 

2 / Y  r(v+l)F(k+l+p/2) l+p/2 
‘m 

(5 9) 

5-4 
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Y Jd  xvf1(l-x2/Y2)p’2 ~k(l+p/2+v,v+l,x 2 2  /Y )JV((,x) dx. 

Then if (5.9) is multiplied by 

x v+l  (1-x2/Y2)p/2 ~k(l+p/2+v,v+l,x 2 2  /y  ) 

and integrated with respect to x from 0 toy ,  the result is 

For the sake of notional brevity, define 

W 

and 

- ~ ~ / y ~ ) ~ / ~  ~k(l+p/2+Y,v+l,x 2 2  /y )F(x) &, 

so that the form of (5.10) becomes 

(5.10) 

(5.11) 

(5.12) 

from which the coefficients bn may be calculated by considering the result as an infi- 

nite system of linear equations in bn, for each choice of v and p. 

5-5 
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For the dual series given by (3.44) and (3.45), it is convenient to define 

C* = t m B L ,  m 

s o  that the dual series 

[-‘C* m m  chsh(m;zo+h)J1((mX) 

sinh(tmh/a)chsh(m; zo) 
m=l 

= 

m 

c 
J mx) 

Y 0 < X < Y ,  

J (6 )((&-l)chsh(m;z 0 ) m=l  1 m 

is of the form expressed in (5.1) and (5.2), where p=-1, v=l ,  

c hsh( m ;z, +h) 
G(m) = sinh([ ,h/a)chsh(m;z, ) ’ 

and C* has replaced am. Therefore (5.8) is now written m 

3/2 Q) 

so that, in view of (5.13), 

b 1/2 m 

According to (5.11), it follows that S(k,n;l,-1) = S(k,n) 

2 /1 m= 1 sinh(5 ,h/a)J1(6,)({&-l)chsh(m;z 0 ) ’ 

(5.13) 

(5.14) 

(5.15) 

(5.16) 

5-6 
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' and from (5.12) 

(5.17) 

by (5.3). 

To summarize, it is desired to obtain the coefficients bn from the following equation 

(5.18) 

where S(k,n) and E&) are given by (5.16) and (5.17) respectively. Then once the values 

of bn(n=O, 1 ,2 ,  * * * )  are known, the values of the coefficients B L  (m=1,2,3,*.*)  can be 

computed from (5.15). 

Making use of a certain contour integral in the complex plane, Tranter and Cooke [SI 

were able to sum the infinite series that corresponds to S(k,n, 1, -1) in this paper, and 

this sum was expressible in the form of an improper integral of the first kind involving 

the modified Bessel functions of both the first and second kinds. Because the form of 

S(k,n, 1,-l), as it appears here,  is much more complicated than the corresponding 

expression appearing in [SI , the contour integral approach yielded for the sum of 

S(k,n, 1, -1) an improper integral, as expected, and, in addition, another infinite 

ser ies ,  In other words , it was found that the infinite series in (5.14) could be replaced 

by another infinite ser ies  plus an improper integral. 

At this point it appeared futile to pursue the Tranter-Cooke [8] method further, and it 

was  decided to attempt to determine the bn's numerically using the IBM 7074 computer, 

given values of the various parameters appearing in the problem. 
5-7 
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‘ Now (5.18) represents an infinite system of linear algebraic equations in the bn’s, and 

a set of numerical values of the quantities b ()’ bl’ b2’ 0 . 0  is called a solution of the 

system if on substituting these values in the left member of (5.18) the infinite series 

converges and all the equations are satisfied for k=O, 1 , 2 *  . According to Kantorovich 

and Krylov [ 111, approximate solutions of (5.16) may, under certain conditions, be 

obtained by terminating the infinite series at ,  say, n=N and by then assigning to k the 

values, 0 ,  1, 2 ,  -ON, in such a way that an N + l  by N + l  system of linear algebraic 

equations is obtained, i.e., 

S(0,O)b +S(O,l)bl+ * e *  +S(O,N)bN = E(0) 
0 

S(1,O)b +S(l,l)b + * * *  +S(l,N)bN = E(l) 
0 1 

. . . . . . . . . . . . . .  
S(N,O)b +S(N, 1)b + * * *  +S(N,N)bN = E(N). 

0 1 

A somewhat different system of equations can be obtained by making use of a special 

case of the integral 1121 

(5.19) 

provided that y >  0,  a >  0, Re(@> -1, andRe(v)> -1. Set v=l,  a=y, u=k-1/2, and 

y=tm; the form of (5.19) now becomes 

k+3/2 
( Y t m ) *  (5.20) 

r (k+1/2) Y 
k- 1/2 2 2 2 k-1/2 2 

x (Y -x ) J1(tmx) dx = k+1/2 Jk+3/2 
6, 

, and integrate with respect t o  x from 0 t o y  to  obtain 2 2 2 k-1/2 Multiply (5.9) by x ( y  -x ) 

(using the same conditions as for (3.44) zbnz chsh(m;z 0 +h)J 2n+3/2(’ mpk+3/2 (YE,) 

n=O m=l sinh(tmh/a)J2(t$ l m m m  )ck (t2 -l)chsh(m;zo) 

03 

9 

5-8 
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where the integral of (5.20) has been used, assuming that the interchange of the order 

of integration and summation is permissible. 

Again define 

03 

c h sh (m ; z o+h) J 2n+3/2 ( Y 5  )J k+3/2("m) 

2 k 7 c s i d  (5 ,h/a) J ,(5 m)5 ,(e 5- 1) chsh (m ; zo) 
S(k,n) = 

m= 1 

where k=l ,  2,3,  , so that an infinite system of equations 

(5.21) 

(5.22) 

(5.23) 

n=O 

is obtained, and the values of B L  can be determined from (5.15) as soon as the values 

of the bn a r e  known. 

As a matter of fact, it is possible to obtain the formal solution of the dual Dini series 

given by (3.44) and (3.45) in a variety of forms depending upon one's ability to find a 

Dini expansion of a function that converges to zero from y < x < 1. This ability seems 

to be dictated by the availability of integrals involving the Bessel function J1(Emx) and 

two free parameters, e.g., consider (5.3) and (5.19). As might be expected, one 

method of solving the dual series may be more amenable to  numerical computation 

than another method. To be more specific, it has been observed that the solutions 

represented by (5.16), (5.17), and (5.18) and by (5.21, (5.22), and (5.23) are not well 

suited to  machine computation since the matrices represented here by S(k,n) become 

ill-conditioned as the dimensions of the matrices exceed 15 x 15 in one case and 20 x 

20 in the other case. Therefore, in the subsequent pages, other formulas for the 

solution of the dual series a re  given. Basically the method of solution is the same as 

that given above; however different integrals involving J,(~,X) a re  employed to give 

5-9 
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various forms for S(k,n) and E(k). From a numerical standpoint, it is desirable to 

obtain infinite series for S(k,n) that converge fairly rapidly and that a r e  such that the 

elements of the S(k,n) matrix do not become too small or lead to an ill-conditioned 

system. 

Consider a function f(x) defined as follows: 

If the trn(m=l,2,  3, * )  a re  the positive roots of the transcendental equation J;(x) = 0,  

then f(x) may be expanded in a Dini ser ies  of the form 

W 

m=l  

where 

According to  Erdelyi [ 121, Page 39, Formula 47, it is known that 

and therefore (5.26) assumes the form 

5-10 
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Hence it has been established that 

/1 
m=l 

1 0,  Y < x <  1. 

Now define 

where the C&(m=1,2,3, * *  * )  are the unknown coefficients in the dual series 

03 

CLJl((,x) = 0,  y < x < 1, c 
m=l 

(5.27) 

(5.28) 

(5.29) 

(5.30) 

where G(m) is given by (5.14) and 

(5.30) is formally satisfied identically for the choice of C&, as made in (5.28) as is 

seen by direct substitution 

5-11 
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because of (5.27), assuming that the interchange of the order of summation is 

permissible. 

Returning to (5.29) and again replacing the C& by (5.28), 

= F(x), 0 S x < y, 

or upon interchanging the order of summation, 

c o s ( Y n ) - c o s ( y ~ ~ ]  J,(tmx) 
= F(x). 2 

m 

n=l m=l J 1 (5 m) (5 g-1) 
(5.32) 

Multiply (5.32) by ( y2-x2)-1'2cos(k p3 y x ) and integrate with respect to x from 0 

t o y  to obtain 

G (m) [cos ( Y n) -c os ( y m)] [cos ( yk) -c os ( y e)] 
2 b n f =  n=l m=l 

2 &J (s )[ (s -l)chsh(m;z 0 ) .  m=l  1 m m m 

(5.33) 

where (5.26) and (5.31) have been employed. 

Therefore, the infinite system 

5-12 
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where 

and 

1 
m= 1 

c E(k) = 

must now be solved for the coefficients bn, 

Alternatively, one might make the change of variable x = 

multiply by sin2y cos (k cos y) and integrate with respect to y from 0 to n/2 to obtain 

sin y in (5.32) and then 

using the integral 

sin ycos(kcosy)J1(Y~,siny) dy 
' 

(5.34) 

which is a special case of a more general integral given by Erdelyi [121, Page 361, 

Formula 19. Now define 

5-13 
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and 

In practice, it was observed that the values of the bn obtained by solving the system in 

(5.33) and the systems in (5.34) were roughly of the same order of magnitude, and 

were such as to cast serious doubt on the convergence of the series for C&,, (5.28). 

Consequently it would appear that the infinite series in (5.28) converges too slowly, i f  

at all, to be of any practical value. 

Consider next a function f(x) defined as follows: 

I 0 ,  y < x <  1. 
f(x) = 

With reference to (5.24) and (5.25), the coefficients Am in the Dini expansion of f(x) 

are obtained from the integral 

where the integral 

1 x 2 s i n ( n m ) J  1 m  (6 x) dx 

5-14 
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' as given by Erdelyi 121, Page 335, Formula 19, has been used. 

Therefore, it has been established that 

Define 

so that (5.30) is satisfied identically. The details of verifying this last statement are 

essentially the same as in the previous cases outlined a few pages earlier, and there- 

fore they are omitted here. However, (5.29) assumes the form 

Proceeding as before and using (5.35), it is found that 

5-15 
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which leads to the infinite system of equations 

b S(k,n) = E(k), k = 1 , 2 , 3 , * * -  2. n=l 

where 

(5.36) 

and 

While the infinite series in (5.36) converges fairly rapidly, it is found that the.matrix 

S(k, n) was ill-conditioned for k=n=15. 

The integral 

u+l  v+ l  
J (zsint)J (scost)sin t cos  t dt 

V 

(5.37) 1 z u  s v  
= &) (7) Ju+v+l(y) 

where y2=z2+s2, Re(u) > -1, and Re(v) > -1, is given in Luke [ 131, Page 299, Formula 

26. If the substitutions z=y[ and s=yw and the change of variable x=y s in t  are made, 

then the form of the integral in (5.37) becomes 
m 

\ 

u+v+l v u 

J (7-m). 
- - Y " L ,  

2 7 (1/2}(U+V+l) u+v+l (5 m+W3) 
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‘ Consider the special case of this last integral for which u= l ,  v=O, and w=n, a positive 

integer: 

(5.38) 

Recalling the integrand of (5.38), define a function f(x) such that 

l x  J o ( n e ) ,  0 * x <  y 
f(x) = 

[ 0 ,  y <  x <  1. 

Now the coefficients Am which appear in the Dini expansion of f(x) can be found by 

carrying out the integration 

according to (5.38). Therefore, it has been shown that 

= lo, y < x < l .  
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Defining 

bnJ2( Y m )  

it is evident that the second equation which appears in the dual series is satisfied 

identically. If (5.39) is inserted into (5.29), it is found that the following equation 

arises : 

(5.39) 

Multiply (5.40) by x2Jo(k&&?) and integrate with respect to  x from 0 to y in 

to  obtain 

which may be abbreviated as 

2 b n S ( k , n )  = E@), 
n=l 

where 

(5.40) 

(5.41) 
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m 

5,J2(Y -1 
E(k) = , n, k = 1 , 2 , 3 , * - *  ‘ J (5 )(5,-1)chsh(m;z 2 )(€&+k2) m=l 1 m 0 

It is not difficult to show that the infinite series of (5.41) converges absolutely, and, 

as a matter of fact, the asymptotic form of the terms in the series for large m is 

neglecting constant multiplicative factors. Nonetheless, the matrix S(k, n) proved to 

be too ill-conditioned for k=n=15 to be handled even by a double precision matrix in- 

version routine on the computer. 

Finally, define 

0 ,  y < x <  1, 
f(x) = 

and determine its Dini expansion for the interval (0,l) .  The coefficients Am which 

appear in the expansion are to be computed from the integral 

Thus 
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where the integral 

given by Erdelyi [ 121, Page 361, Formula 19, has been employed. Hence it has  been 

established that 

1. 

Continuing in the usual fashion, define now 

m 

(5.42) m 
2 2 314 

(n + tm)  

This choice of the form of C& is appropriate because (5.30) is satisfied identically as 

is easily shown by direct substitution. 

Inserting the expression for C& given in (5.42) into (5.29), it follows that 
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Multiply this last equation by x 2 ( y  2- x 2 ) -1/2 cos(k p 7 2  y x ) y  and integrate with respect 

to x from 0 t o y  to obtain 

n=l  

- - 

which leads to the infinite system of linear equations in b, 

W 

C b n S ( k y n )  = E@), 
n=l 

where 

W c S(k,n) = 

m=l 

and 

m=l J,(tm)(t&-1)@ 2 + t m )  2 3/4 chsh(m;z c 
0 

E(k) = 

For large m,  the terms in the infinite series in (5.43) behave as 

1 

(5.43) 

so that it would appear that the ser ies  should converge. It should be pointed out that 

sin (tm-r/4) # 0 for any m=1 ,2 ,3 ,*** .  
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SECTION 6 

SOME REMARKS ON THE NUMERICAL 

ASPECTS OF THE PROBLEM 

Because the infinite series in (5.43) converges slowly, methods of speeding con- 

vergence have been investigated. In particular, Lubkin [ 141 has discussed the trans- 

formation of a given infinite series 

S = a  + a  + a  + a  + . . . + a  + . . .  
0 1 2 3 n 

into a new series 

T =  b + b  + b  + b  + ... + b  + ... 
0 1 2 3 n 

Define the partial sums of the series by 

S = a  + a  + a  + . . . + a  
n 0 1 2 n 

and 

T = b  + b l + b  + . . .  t b  
n 0 2 n' 

and define the T ser ies  by the relation 

which, after minor manipulations, can be expressed as 

S2 
0 

s 2 - s  s n n-1 n+l T =  , n > 0 ,  T = n 2 s  - S  - s  0 2 s  - s1 
n n- 1 n+l 0 

Going one step further, 

may be computed from 

a R  
0 0  b =- 

0 
o R - 1 '  

it can be shown that the individual terms of the T series 

where R = a /a n n n+l'  
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In accord with usual terminology, a ser ies  C =z Cn with partial sums C = 
n 

n =  0 
n 

c is: 1) said to be more rapidly convergent than S ,  see (6.1) , if both S and C m  m=O 

and C converge, and (C - C ) / ( S  - S ), the ratio of corresponding remainders, 

tends to zero as n tends to infinity; 2) of the same order of rapidity of convergence 

as S if both series converge, and remains in value between 

two finite positive constants for all sufficiently large n; and 3) no less  rapidly con- 

vergent that S if both series converge and the ratio of corresponding remainders is  

bounded as n tends to infinity. 

n n 

(C - Cn)/(S - S ) I n I 

In particular, the following theorem has proved useful: 

Theorem. Let 

Qn = n (Rn - 1) 

and 

Q = lim Q n' rn 

If S converges, Q exists, # 1, and n(Q - Q ) + 0 as n+a  , 

then the series U = 2 un with 

n n- 1 

n=O 

(Qb - an) n u =  
n Q - 1  

converges more rapidly than S and has the same sum. 

However, since T converges and T = S, Lubkin [ 141 shows that 

QT - S n 
n Q S - S  

Q - 1  Q - 1  
+ = s, n u n = x u  m = 

m=O 

6-2 



GDC-DDE 66-0 17 

and thus the approximation 

QT - S 

n Q - 1  
n n u =  

to the value of S is more accurate than is S itself. 
n 

Another nonlinear transformation, called the W transformation, is  useful, especially 

so since the value of Q is not required. Lubkin [ 143 points out that there a re  also 

peculiar cases where the T transformation is usable but not the W. 

Define 

0 
R 

- 0 

0 0 

b 
p = - - -  

o a  R -1 

and 

The W transformation is then defined by the relations 

w = w  + W  + w  + . . . +  w + ..., 
0 1 2 n 

+ w + w, + ... + w ,  wo 1 Y n 
w =  

n 

Tn - 'nSn - - 
1 - P  

n 
(6.,4) 

The conditions under which the W transformation is applicable are given in the 

following theorem as given by Lubkin 1141: Theorem. If S converges, Q exists, 

# 1, n(Q - Q ) - + O ,  andn[  (n+l) (Q -Q ) - n(Q - Q ) ] -  O a s n t e n d s  
n n- 1 n+l  n n n- 1 

to infinity, then W converges more rapidly than S and has the same sum. 

Examination of the numerical values obtained for the series given in (5.43) has re- 

vealed that the transformations appearing in (6.3) and (6.4) lead to results that a r e  

not consistent with the partial sums of the series itself. The complexity of the gen- 

eral term in the series makes it rather difficult to show that the conditions of the 

6 -3 



GDC-DDE66-017 

appropriate theorems are actually fulfilled. 

Salzer [ 151 discusses a method of summing certain slowly convergent ser ies  which 

is well-suited for machine computation. The application of Salzer's technique may 

be widespread since it involves a purely numerical device which i s  employed with- 

out any specific analytic work upon the series. The basic idea of this approach i s  

to consider S 

x = n, from which one would like to calculate S(a) by the m-point Lagrangian inter- 

see (6.2) as the tabulated value of a certain function of x, say S(x), at n 

polation polynomial. Then to calculate the limit S of a sequence S 1' S2' * * * Y s , n 
using the m-point extrapolation formula, one multiplies each of the last m terms, 

S (m) , i = 1,2,  . . . , m-1, by the corresponding extrapolation coefficient B (m) ./D , n- i n, n-i n 
and sums; thus 

m -  1 

S N (l/D(m))c n B ( m )  n,n-i S n-i' 
i = O  

The coefficients required in (6.5) a re  listed in Table I in Salzer's paper. 

For machine purposes, numerical values of the Bessel functions involved in various 

phases of the problem can be obtained by writing a machine language subroutine 

following a recent paper by Gautschi [ 162. This procedure evaluates to d significant 

digits the Bessel functions J (x) for n = 0, 1 ,2 , .  . . , 0 5; a < 1, and x > 0. The 

method of computation is a variant of the backward recurrence algorithm of J . C. P. 

Miller a s  discussed by Gautschi [ 171. The algorithm is most efficient when x is 

small o r  moderately large, although near a zero of one of the Bessel functions gen- 

erated, the accuracy of that particular Bessel function may deteriorate to less than 

d significant digits. 

a+n 

Abramowitz and Stegun [ 18) have given polynomial approximations for J (x) and 

J (x) for smaU argument x as well as large. In particular, for I X I  s 3, 
0 

1 

4 
J (x) = 1 - 2.24999 97(X/3)2 + 1.26562 08(x/3) 
0 

6 
-0.31638 66(x/3) 
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10 12 + 0.00021 OO(x/3) f 0.04444 79(x/3)' - 0.00394 44(x/3) 

+ e,  le1 < 5x10-8 

whereas for 3 x < 03, 

1 -- 
J &) = x f (x) cos e (x), 
0 0 0 

f (~)=0.79788 456 - 0.00000 

where 
2 

077(3/~) - 0.00552 740(3/~) 
0 

-0.00009 512(3/x) 3 + 0.00137 237(3/x) 4-  0.00072 805(3/x) 5 

+0.00014 476(3/x) 6 + e, le1 < 1.6x10 -8 , 

and 

2 9 (x) = X  - 0.78539 816-0.04166 397(3/~) - 0.00003 954(3/~) 
0 

+ 0.00262 573(3/x) 3 - 0.00054 1 2 5 ( 3 / ~ ) ~  - 0.00029 333(3/x) 5 

6 -8 +0.00013 558(3/x) + e ,  le1 < 7x10 . 
Similar expressions are  given for J (x). They are,  for 

1 

1x1s 3, 

-1 1 2 4 x J (x)=- - 0.56249 985(~/3) + 0.21093 573(~/3) 
1 2  

- 0.03954 289(x/3) 6 + 0.00443 3 1 9 ( ~ / 3 ) ~  - 0.00031 761(x/3) 10 

12 -8 + 0.00001 109(x/3) + e, I el < 1.3x10 

2 
fl(x)=O. 79788 456 + 0.00000 156(3/x) + 0.01659 667(3/x) 

1- 0.00017 105(3/x)~ - 0.00249 511(3/x) 4 + 0.00113 653(3/x) 5 

6 - 0.00020 033(3/x) + e, le1 < 4x10-8 
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and 

2 
e,(x)=X - 2.35619 449 + 0.12499 612(3/x) + 0.00005 650(3/x) 

5 
-0.00637 8 ~ 9 ( 3 / x ) ~  + 0.00074 3 4 8 ( 3 / ~ ) ~  + 0.00079 824(3/x) 

6 -0.00029 166(3/x) + e, le1 < 9x10-~. 

When v is real, the function J'(x) has an infinite number of real zeros, all of which 

a r e  simple with the possible exception of x = 0.  

zero of this function is denoted by j ' 
expansion as given by Abramowitz and Stegun [ 183 ; i. e . ,  when v is  fixed, in i ;  V, 

and u=4v , then 

V 

For non-negative v the mth positive 

Large zeros may be obtained from McMahon's 
v, m' 

4 

2 3 2 

3(8b)3 15(8b)5 

U + 3 4 ( 7 ~  + 8 2 ~  - 9) 3 2 ( 8 3 ~  + 2 0 7 5 ~  - 3 0 3 3 ~  + 3537) - f -  - b - -  - 
jv, m 8b 

4 2 

105(8b) 
..., - 64(6949u + 2 9 6 , 4 9 2 ~ ~  - 1 , 2 4 8 , 0 0 2 ~  + 7 , 4 1 4 , 3 8 0 ~  - 5,853,627) - 

7 

where b=(m+v/2-3/4)~. On the other hand, the well-known Newton-Raphson technique 

may be employed to obtain the small zeros as well as the large. 

an iterative process in which an initial approximation x to a desired real root is ob- 

tained, by rough graphical methods o r  otherwise, and the recurrence relation 

This method involves 

0 

x = x - f(x,)/f'(x ) 
n+l n n 

1' x2' * * * '  n' * * *  
is used to generate a sequence of successive approximations x 

which converges to the desired root. Starting with 

f(x) = xJ' (x) = XJ (x) - J (x), 1 0 1 

it is easy to show that the zeros of J'(x) = 0 can be obtained from 1 
9 
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' Thus, once the first zero j '  has been determined to the desired accuarcy, the next, 

can be obtained by repeating the above process starting with the initial approxi- 
1 9 1  

j;, 2' 
mation j '  

process has been utilized to obtain the first 40 zeros j ' 
which a re  tabulated along with the values of J (5 ) in Table 1. 

+ 7 , since the zeros of J'(x) are  separated roughly by 7. This 

, (m=l,  2 , 3 ,  . . . , 40), 
1,2-  j l ,  1 1 

= 5 1, m m 

l m  
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Table 1. Some Zeros of J'(x) and Values of J (6 ) 1 l m  

m em J+tm) 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
2 1  
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 

1.84118 
5.33 144 
8.53632 

11.70600 
14.86359 
18.01553 
21.16437 
24.31133 
27.45705 
30.60 192 
33.74618 
36.88999 
40.03344 
43.17 663 
46.3 1960 
49.46239 
52.60504 
55.74757 
58.89000 
62.03235 
65.17416 
68.3 1683 
7 1.45898 
74.60109 
77.743 15 
80.885 19 
84.02718 
87.16916 
90.31110 
93.4530 1 
96.5949 1 
99.73679 

102.87 870 
106.02054 
109.16236 
112.30417 
115.44597 
118.58775 
12 1.72954 
124.87 13 1 

0.58186 512 
-0.34612 619 

0.27329 993 

0.20701 284 

0.17345 904 

0.15228 206 

0.13735 718 

0.12610 881 

0.11723 850 
-0.11345 236 
0.11001 101 

-0.10686 507 
0.10397 455 

0.09883 418 

0.09438 803 

0.09049 268 

0,08704 301 

0.08396 007 

0.08118 313 

0.07866 47 1 

0.07636 701 

0.07425 961 

0.07231 757 

-0.23330 440 

-0.18801 748 

-0.16183 821 

-0.14424 289 

-0.13137 284 

-0.12143 116 

-0.10130 665 

-0.09653 438 

-0.09237 880 

-0.08871 756 

-0.08545 986 

-0.08253 658 

-0,07989 417 

-0.07749 031 

-0.07529 119 

-0.07326 029 

-0,07140 201 
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SECTION 7 

CONCLUSION 

This report considers the irrotational motion of an incompressible, inviscid liquid 

contained in a partially filled cylindrical tank on the vertical wall of which is mounted 

a thin ring for the purpose of damping the free surface oscillations of the liquid. The 

tank is subjected to both transverse and rotational harmonic vibrations. In the solu- 

tion of Laplace's equation for  the velocity potential a dual Dini ser ies  arises because 

the boundary conditions in the plane of the annular baffle are of the mixed type. Fol- 

lowing a method due to Tranter and Cooke [83, several forms of the formal solution 

of the dual series are given which, in every case, lead to an infinite system of linear 

algebraic equations. From a numerical point of view, many of these systems a re  

plagued with an ill-conditioned coefficient matrix, and, also, it should be pointed out 

that in certain cases great care  must be taken to obtain accurately the elements of these 

matrices since they are obtained by summing rather slowly convergent infinite series. 

Some methods of speeding the convergence of these series a re  discussed. For the 

numerical solution of the dual series, since the zeros of the transcendental equation 

J'(x) = 0 and numerical values of Bessel functions of the first kind of various orders 

and arguments a re  needed, special formulas are tabulated and machine language 

algorithms are  referenced. 

1 
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